SIMPLE HARMONIC MOTION

Student Learning Outcomes (SLOs)

The student will |

= describe simple examples of free oscillations.

# use the terms displacement, amplitude, period,
frequency, angular frequency and phase difference
in the context of oscillations.

= Express the period of simple harmonic motion in
terms of both frequency and angular frequency.

= Explain that simple harmonic motion occurs when
acceleration is proportional to displacement from a
fixed point and in the opposite direction.

* Use & =-w! ¥ to solve problems.

= use the equations v= v, cos {wt) and v = tw/xF — x2
to solve problems.

= Analyze graphical representations of the variations
of displacement, velocity and acceleration for
simple harmonic motion.

« Analyse the Interchange between kinetic and
potential energy during simple harmonic motion:

= Apply %mwt.x,f for the total energy of a system

undergoing simple harmanic motion.
= describe that a resistive force acting on an
oscillating system causes damping.
= u=e the terms light, critical and heavy damping.
sketch displacement-time graphs to illustrate tight,
critical and heavy damping.

= State that resonance involves a maximum amplitude
of oscillations and that this occurs when an
osciliating system is forced to oscillate at its natural
frequency.

= Describe practical examples of free and forced
oscillations.

= Describe practical examples of damped oscillations
[with particular reference to the-efforts of the
degree of damping and the importance of critical
damping in cases such as a car suspension system.]

= Justify qualitatively the factors which determine
the frequency response and sharpness of the
resonance.

= identify the use of standing waves and resonance in
applications [such as rubens tubes, chladni plates
and acoustic levitation (knowledge of wave
harmonic modes 15 not required)]

= Justify the importance of critical damping in a car
suspension system.

= Justify that there are some circumstances in which
resonance- is - Useful  [such as tuning a radio,
micréwave oven' and-other circumstances in which

resonance should be avoided such as airplane's wing
or & suspension bridge].



Have you ever wondered why a pendulum swings back and forth, or how a guitar string vibrates
to produce sound? Perhaps you've noticed the smooth motion of a child on a swing or the
rhythmic movement of a spring-based toy. These phenomena are all connected by a
fundamental concept in physics: Simple Harmonic Motion (SHM). SHM can be observed in various
natural and man-made systems. It is in the rhythms of nature, how the universe moves,

vibration of atoms, mechanical systems that engineers create, and countless other systems
from everyday life.

In this chapter, we'll delve into the world of SHM, exploring topics such as oscillations, uniform
circular motion, phase of motion, and energy conservation. We'll also examine the differences
between free and forced oscillations, and discover the fascinating phenomenon of resonance.

Sometimes harmonic motion can cause problems. One famous example is the collapse of
Tacoma MNarrows Bridge. The bridge was designed by structural engineers who did not
adequately take into account the role of harmonic motion and it led into its collapse. So, let's
20 to uncover the rhythm of such a motionl

17.1 OSCILLATIONS

What does a child on a swing, the pendalum of a clock and b:cu.mcfng of children on the
trampoline (as shown in Fig.17. 1), all huw: in common? They all oscillate, i.e., they move hack
and forth between two points.-

Figure 17.1: Examples of oscillation in our surrounding.

When a body moves to and fro about its mean position, then such motion is called vibratory or
oscillatory motion.

In our surrounding, there are many other systems which oscillate. For examples,

The motion of the Earth during earthquake.

= The wings of birds d'urlng flying. e:hllh[t ml:trdr;h lm!ntl 1::: " Smnd':
= A string of a guitar producing music. i waves propagate through a medium,
= Vibration of atoms in a crystal. A causing Ndﬂiﬂf:.b“ oscillate. Light

i ; waves and other electromagnetic
= The beating of heart, i radiation exhibit oscillatory behavior.
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= Mass attached to a cpmpmsed or stretched spring
(horizontally or 'pﬂrﬂcally} Once it is released, starts

oscillating.
The complete round trip of an oscillating or vibrating body
about its mean position is called oscillation or vibration. - o
Extrams Extreme
One oscillation occurs when a particle moves from its mean posttion o Poxtion
position to extreme position (A) in one direction, moving back Meaan

to extreme position (B) in the opposite direction through mean X
position and back once more to mean position, as shown in Fig. Figure 17.2: One oscillation.
17.2.

Terms Related to Oscillations

In this section, we shall know about some important terms related to oscillatory motion.

(i) Displacement (x): The distance of vibrating body from the equilibrium position on either
side at any instant of time is known as displacement. Its 5| unitis n‘nel:éf (m).

{ii) Amplitude (% or A): The maximum disp{anement ::rf n ﬂbt‘atmg bu-dy from mean position
is called amplitude. Its 5! unit is meter (m].._ VAL Oy WAL L

(iii) Time Period (T): The time talmn ‘to cnmnIete one oscillation or vibration is called time
period of the millntiun. it is-qenbted by T. Its Sl unit is second (s).
(iv) Frequency (f):|The e number of vibrations or oscillations (n) per unit time (t) is called

frequency. It is denoted by f, and f = % . Its Sl wnit is hertz (Hzx).

One hertz is defined as: the one oscillation per second. The relationship between frequency
and time period is:

1
i s
{v) Angular Frequency (w): Angular displacement per unit time is called angular frequency.
It is related to the frequency ‘" and time period “T" of the oscillation by the expressions as:

w=2mnf= E?Jl'

7.2 SIMPLE HARMONIC MOTION _ -

Simple Harmonic Motion is a type of motion in which a system usn:ll.htes back and forth around

a mean (equilibrium) position. It Is d‘tal"atteﬂf-léd bya resthdng force. Simple harmonic motion
(SHM) is defined as:

% |
. { |

Al N .
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Such oscillatory motion in which acceleration of _a-p-nrﬁ;le is directly proportional to its
displacement from the mean position and is always directed towards the mean position.

Mathematically, simple harmonic motion'is expressed as:

AT RME a o — X

SHM can be observed in many natural phenomena. A
good example of SHM is motion of mass {m) attached to
an elastic spring. The other end of spring is connected
to a fixed support, as shown in Fig. 17.3.

Let us assume that the mass of spring is ignored and the
mass is free to move on a frictionless, horizontal
surface. In the absence of an external force, the spring
is neither stretched nor compressed. Hence, the mass
stays at its equilibrium or mean position, which we
identify as x = 0, as shown in Fig. 17.3 (b).

Let the mass is stretched towards right through a
displacement ‘x' from its equilibrium position by
applying a force F, as shown in Fig. 17.3 (a). Due to PG
elasticity, spring exerts an opposite force on the mass || JULE n=@
which is proportional to the displacement ‘x' from Fl]'u'r-‘l? 3: Mass "m" oscillates on
mean position. This force is called restoring furm Tm.f. ' horizontal surface.
restoring force obeys Hooke's hw 1|,

Feu—kx 1\ WYY e
‘Here °k’ is called the s:brln*'g constant. The Sl unit of kis N m™.

The negative sign in Eq. (17.1) shows that the force exerted by spring is always directed
opposite to the displacement of the mass from mean position.

When the mass is displaced to the right of mean position, the displacement x is positive but the
restoring force is directed to the left {mean position).

When the mass is released, it moves towards the mean position. Due to inertia, it cannot stop
at mean position and goes ahead. Then the mass begins to compress the spring and slows down,

coming to rest at the left side of the mean position equal to its initial distance on right side, as
shown in Fig. 17.3 (c).

The compressed spring then pushes the mass back toward the mean position. Again, the mass
cannot stop at the mean position and goes ahead. The result is that the mass oscillates back
and forth about the mean position. Since the mass is continuously changing its direction, so it

accelerates. According to Newton's second law of motion, the force acting on the mass is
given by:

F=ma _ 1 7._;2}
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By comparing Eq. (17.1) and Eq. (17.2), we get:
ma=— kx

K
or a = X0 (17.3)

(17.3), nﬁ';- a¥ is constant. So,

In Eg. angular

frequency of ‘mass attached to the spring” is:

kK
m-.‘,—
m

Mow Eq. (17.3) can be written as:

(17.4)

a e —Xx

This relation shows that the oscillating mass exhibits
SHM: its acceleration (a) is proportional to its
displacement (x)} and is directed towards mean
position.

The atoms in a material oscillates as if
the atoms were connected by a tiny
spring, hence exhibit SHM. The spring
constant of this spring depends upon the
type of bonding between the atoms. This
model can be extended to solids, where
atoms are often thought of as being

connected to their neighbours by
springs. This leads to an experimental
way of obtaining information about
interatomic forces in the solids.

Frequency and Time Period of an Oscillating Mass-Spring System

As angular frequency ‘w’ is related to the-"frei._:h.nh;n:y, and time .period by the following

expressions:
w=2nf= z_ir._l
- —
Lds ]
k
By putting w = J; . We get:
m ¥
Tm2m  |—
k
Similarly, for the frequency, we can get the following expression:
1 k
fm — J—
Zax Ym

Example 17.1: A Fish is hung on a spring scale.

(a) What is the constant of the spring in such a scale if the spring stretches 8.0 cm for a
10.0 kg load? (b) What is the mass of the fish that stretches the spring 5.5 cm?

(a) Given: x =8.0cm = 0.08 m
To Find: k=17

National Book Foundation
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Solution: According to the Hooke's law., Fm kx| AR
Here, F = W = mg. :

Therefore, k- Bz
: '.:, .l
Putting values, we get: k= %é—a =1225N m™"'
(b) Given: x = 5.5 cm = 0.055 m
To Find: m =7
Solution: As m= —‘;ﬁ
Putting values, we get: m = 1225 x0.055 = 6.875 kg

9.8
Assignment 17.1

An object with mass 500 g is suspended from a spring. The spring is stretched by 9.8 cm.
Calculate the spring constant.

17.3 UNIFORM CIRCULAR MOTION AND SHM

There is a close connection between circular motion &ndi . P
simple harmonic motion. Therefore, many, aspects ﬁuch as/ | S
displacement, wvelocity and acceleratmn df‘ :lmple
harmonic motion (SHM} can bﬂ‘ Wﬂﬂﬁtﬂﬂd b'_r reLatlng it
with uniform circular rnntion b \

Consider a point P is; muvﬁng on a circular path of radius X
in xy-plane at ccnitnl‘l'l: angular velocity w, as shown in Fig.
17.4 (a). At the same time, Q be the projection of P on the
x-axis undergoes oscillation along the diameter of circular
path between -x, and +x..

It is seen that the time period of one revolution of point P Figure 17.4 {a): A point P is
on the circular path is equal to the time period of one  mMoving on a circular path at
oscillation of point Q on the diameter. Therefore, the CORVELIARE SV YSloCity W,
angular speed of P is the same as the linear speed of Q. Thus, the expressions for displacement,
velocity and acceleration of P also hold for the Q.

Expressions for Displacement

As the point P moves o:; the circle, at some instant t, the angle made by the line OP with the

x-axis is 8 = wt. From the Fig. 17.4 (a), the instantaneous disptacement % of Q at that instant
can be calculated as: \

From AOPQ, €os@ = A NN [ e

o ™ - 1
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or X = X, cO58 = X, coswt | {1?5} ,
Eq. {(17.5) can be used for call:ul.lting di'spla:ement of a body executing simple harmonic
motion. . |

Expressions for Velocity

Velocity of the point'-r'.l’" at instant t is vp = ¥, w, which is directed along the tangent.
Iinstantaneous velocity v of the point Q is the projection of v on the x-axis, which is the
horizontal component of ve, as shown in Fig. 17.4 (b).

v = vp CcOs(90° — @)

or v = vp 5inB (17.6)
as, sin*® +cos?8 =1 or sin?® = 1 —cos?B
so, Eq. (17.6) becomes:

v=veJ1l—cos?*g

or v=x0 J1—cos®*@
Using Eq. (17.5), we get:

v-m..fx’—x’ (17.7)

Eq. (17.7) can be used for calculating velocity of a ha-dy Figure 17_,4mp Velocity of the
executing simple harmonic motion. ~ o peint O P and its  horizontal -

Expressions for Acceleration '/ /|| | " :
Since w is constant, so the a::celaeratim af the puint P is
centripetal i.e., ar = X %, whith is directed inward towards -
0. The acceleration ‘a! m-f 'Q'is the horizontal component of ‘_.-""
ae, as, shown in Fig. 7.4 (c). P 4
&,

a=—aer COS6 — — X, w’ cos8 [
Since the velocity is decreasing, so the negative sign shows %
that acceleration of Q is directed towards O. Using "‘.‘

-
cos8 = i,we get: . e
X )

° Figure 17.4 (c): Acceleration of
a=—w x - (17.B) the point P and its horizontal

This equation describes the SHM. Hence, the oscillatory component.

motion of point Q is SHM; its acceleration is proportional to its displacement and is directed
opposite to the displacement from mean position. Hence, we can conclude that:

. When a body moves in a circle, its projection undergoes simple harrnonic motion on the
diameter of the circle. : \

So, acceleration of a body executing simple hannnnlc rm:-l.inn can be cal.culated by using Eq.
(17.8).
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Example 17.2: A body with mass 800 g atﬂc’l‘mdtu a sprlng, vibrates with amplitude 30 cm.
The restoring force is 60 N WMn lhr.- displacement is 0.30 m. (a) Find out fts nngullr
fregquency (b) Also ;_atm!qte _mnln!tude of its velecity and acceleration at x = 12 cm.

Given:m-!ﬂﬂghﬂ.h"ki' % =30 cm = 0.30 m
F=60Natx=30cm=0.30m x=12cm=0.12 m
To Find: (a) angular frequency = w = 7
(b) velocity = 7 Acceleration =g =7
F 60
luti H As ks — = =200 N i
Solution: {(a) x. ~ 0.30 m

Angular frequency is given by the relation:

'k _ ’200 _ a
) r-a mﬂ-& 15.81 rad s

{b) For velocity, we use:
Vo= X2 —x°
Putting values, we get: TR
v = 15.81 Dtaz _u‘.‘f- 1.;4;!"5_1.: I..:I [ -._!__,!_ AR
For acceleration, we use: A O AN |
a=wx e VAR UAL LY WL
Putting values, we get: | b R e
a m{iﬁ.ﬂ‘l}" {ﬂ 11} e
\[} \:.-T. Assignment 17.2

Time period of a rrmss attached at the end of a spring is 0.40 s. Find out the magnitude of
acceleration when the displacement is 4 em.

17.4 PHASE

We have studied that the instantaneous displacement of the point executing SHM is given by
the Eq. {(17.5), as:

X = X5 cOSE or X = Xo COSE
Here, 8 = wt is the phase of motion and can be defined as:

The angle 8 = wt which specifies the displacement as well as the direction of a point executing
SHM is called phase of the motion.

In general, the Eg. (17.5) can be written as:
x=x cos{wE+¢@) _____ (17.9)

The term « is called initial phase. The i nclusmn nf tp :h'es thn fnfnrmntiun regarding the starting
or initial phase of oscillation. v b AR
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Physical Significance of Phase

To give the physical significance of phase, we use displacement -time graph. Since x is periodic,

so T is the time period of l:ha oscillation.
If o = 0°, then Eq. (1 ?‘.9] becomes:
X = My COSl

Puttingt =0, T/4, T/2, 3T/4, T ...., we
get a graph, as shown in Fig. 17.5 (a).
This graph shows that:

Att =0, T/2 and T (corresponding to 8
= 0, m and 2mw), the point is at the
extreme positions.

At t = T/4 and 3T/4 [corresponding to
8 =mw/2 and 3n/2), the point is at mean

position.
If tp = 907 then Eq. (17.9) becomes:
x = xz; cos{wt + 90°)

Putting t =0, T/4, T/2, 3T/4, T ...., we

get a graph, as shown in Fig. 17. 5 (l:n

This graph shows that:
Att =0, T/2and T (c
= 0, m and 2mw), the pdint is at mean
positions.

At t = T/4 and 3T/4 (corresponding to
8 = w/2 and 3w/2), the point is at
extreme positions.

If ¢p = 1807, then Eq. (17.9) becomes:
x = Xg cos{wt + 180°)

Puttingt=0, T/4, TS/2, 3T/4, T ...., we
get a graph, as shown in Fig. 17.5 {c).

It can be noted that:

= The curve in Fig. 17.5 (b) leads the
curve in Fig. 17.5 {(a) by 90°,
because their phase difference is
90°.

Hational Book Foundation
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Filgure 17.5 {a): Graph of X = x, cos{wt + ), for gp=0°.
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i

Figure 17.5 (b): Graph of x = X, cos{wt + ), for =907,
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Figure 17_5_ [cj:-_grb_'pﬁ'ﬁf x* x,"m&t{ml'. + ), for gp=180°,
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. T

Similarly, the curve in Fig._'l? 5 {E] lead! l:he !:-LI‘WE in F‘!g 17.5 (a) by 180°, because their
phase difference is 180°. \

When the phase diffmnqe' bdrl:ween two oscillating systems is 180°, they are said to be
oscillating out of plnse

When the phase differeru:e between two oscillating systems is 0° or 360°, they are said to be
oscillating in phase.

175D GRAFPHICAL REPRESENTATIONS OF DISPLACEMENT,
VELOCITY AND ACCELERATION FOR SHM

The graphical rnpresentatiuns nf displacement, velocity am:l an:celmtiun of a body executing
SHM is given in Fig. 17.5 (d).

{i) The displacement of the particle executing SHM x,
is given by the expression:
x=xocoswt (i) J

As maximum value of displacement of the particle -,
15 Xo. i

e T L

(ii) The velocity of the particle executin{ srm fs'"' g (ot
given by the expression: ) THARLE"] e

V= Mo \h m ﬂ > 1
or v-mwsin"{mt] R | | )] Z

The velocity of the pan:lcle is maximum (i.e., v = wix, +

+ X w) at the mean position and zero at the
extreme positions.

(iii)) The acceleration of the particle executing _ .2, /
SHM is given by the expression: -

Figure 17.5 (d): Graphical representations
a=— aw?x of ‘x*, ‘v* and “a* of a body executing SHM.

Putting x = x, coswt, we get:

e Ll T
P, L L LT

a = - x, w* cos(wt) S (1}

The acceleration will be maxdimum (i.e., X w?) at the extreme positions, and zero at the mean
position.

The graph of the Eqgs. (i), (ii) and (iii) is shown in Fig. 17.5 {c). It can be seen that:
= The phase difference between velocity and displacement s miz.
= The phase difference between acceleration andd:iml.ﬁ:mmnt is mw.
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17.6 SIMPLE F"ENDLILUM

An ideal simple pendulum consists nf a small but heavy P

bub of mass m which [is suspended by a light and

inextensible string of length [. The other end of the string

is attached to a fixed frictionless support at point P, as

shown in Fig. 17.6 (a).

When the bob is displaced slightly from its mean position

0O, after releasing it oscillates to-and-fro along the arc of

a circle with centre at P. Suppose that the oscillating

frictionless

bob is at point A at some instant, where the bob's™ ~ . q;:_
displacement is x and the angle OPA = 8. The forces trajectory i i assive
acting on the bob are the tension T exerted by the string equilibrium Bk
and its weight mg acting vertically downward. position

Figure 17.6 (a): Simple pendulum.

The weight mg of the bob can be resolved into its two
rectangular components, i.e.

i) megcos8 along the string.

ii) megsing along the tangent to the arc. o,

Tension in the string exactly cancels| thﬁ' comp-nnqnt.'- |

mgcos8. The net force mgsing qrn the buh at-Alis the
restoring force which makes | l'.u mlerate towards

equitibrium position, i.e., - :-r"| 3

F=-— m.g ﬁnﬂ {i)
Hegative sign indicates that the force is acting tnwa-rds-
mean position O. When 8 iz small (less than 10° or 0.2 rad),
as shown in Table (7.1), we make the approximation sin 8 e TP i

= B and Eq. (i) becomes: weight.
F=—mg8 (ii)
Table 7:1: Values of 8 and sin 8
From Fig. 7.6 (b), arc length = OA, then, . for small .anglpc,.
OA 8 (degree) 8 (radian) sin 8
8= — 0.00 0.0000 0.0000
L 1.00 0.0175 0.0175
For small angle 8, the arc OA = x, then Eq. (iii) becomes, §—g-g E:g%g ggg:
o 4.00 0.0&98 0.0698
Fms—my < —_— (i) 5.00 0.0873 0.0B72 |
6.00 ~0.1048 0.1046
According to Newton’s second law of motion, the force . 7.00 1 0.1222 0.1219
St ey tTas ol 8 g _ _ (800" 0.1397 0.1392
o L | 9.00 0.1571 0.1565
F=ma . _{w} \[ 10.00 0.1746 0.1737
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By comparing Eq. (iii) and Eq Hv}, we get:

I'I'IE’F"—II'F'IE'H--
a-—.-!x I L) |

or ae — x _ Awi)

The Eq. (vi) describes the SHM. Hence, an oscillating simple pendulum exhibits SHM. As equation
for acceleration of a body executing SHM is:

a=—wx — (vii)
By comparing Eq. (v) and Eq. (vii}, we get:

w = J%— e (vEi©)

S0, the expression for time period of the simple pendulum can be obtaincd by putting Eq. (viii)
inT=2w /w, thus we get: ]

S 1_7-1_0} ALY

Above equation shows that‘ \

The time period of nl,ximﬁle penmm.u'n depends on the length of the pendulum and the
acceleration due to/gravity. It is independent of the mass.

Example 17.3: A simple pendulum completes one vibration in one second. Calculate its
length when g = 9.8 m s,

Given: Time period of the simple pendulum =T =1s
Gravitational acceleration =g = 9.8 m s
To Find: Length of the simple pendulum =1l =7

Solution: As T=2mn ’-l-
2

Putting values, we get: 1=2Zx3.14 'a_':_i
l=0.248m = 24.8B8cm
Assignment 17.3

Find the time periods of a simple pendulum with length 1 rn pl-m:ud on Earth and on Moon.
The value of g on the surface of Moun is ‘l}ﬁ"‘ of its \mlua 'on Earth.
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17.7 ENERGY CONSERVATION IN SHM
Energy of a body execuﬂng Sfl-m remains cmwrved To examine this fact, we again consider a
vibrating mass-spring 'system, as shown in F‘ig, 17.7 (a). When the spring is stretched by the

applied force 'F' through a displacement ‘x", work must be done. This work W is given by:
w=F, x - {1}
According to Hooke's law, the applied force is given by:
F=kx (i)
Since the force increases linearly from 0 to kx, the
average force Fa. is given by:
O+k x 1
F = - —
av > > kx (iii)

Substituting the value of F.. in Eq. (i) from Eq. (iii), we
1 1
E: = [ —f Lt 2
ge W= 3 x ){x) :Zk x

As, this work is stored in spring as elastic pntential
energy. Hence, the potential energy at any instant x*
is given by: N R A

P.E= —kx A ey u?‘n) WY g

At extreme pos:tiun where |the | dlsplan:ement is F""'r:‘ 17.7: A vibrating mass-spring
maximum, i.e. X = X, the, brki:q.kui.i:t rest. So, its kinetic PIBAEIR
energy is zero and tn;#lleﬂérgy is entirely elastic potential energy, i.e.

T.E = P.E max = %kxﬁ (17.12)

When the block is released, it moves toward mean position. As a result, its velocity increases
and also its kinetic energy. However, the displacement of the block decreases and also its

elastic potential energy.
As, the instantaneous velocity v of the block executing SHM is given by,

Vo= xE—xz (iv)

As, w = ,’% , 50 Eq. (iv) becomes:

V= ,’%{xi—x‘} i V)

At mean position x = 0, the block gets maximum velocity, i.e.,
Vo = % Xo e el) ~ (o
Hence, at any instant where the dlsplacemenl: 15 m’ th! kmet!c enengy is given by*

K.E = %mv’ = —l;[x* x*} P B {1? 13}
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At mean position (x = 0), the -ri'?n.st'lc'-'potentlnl energy is zero but the velocity is maximum, hence
the total energy is entiqel.g._lﬂnet!c?énergy.
RN :

N 1 1
T.E=K.E max = Emv'f___ = El~:1|-c: - (1714

Let us now examine the total energy of the systems at displacement x. As, the total energy is
the sum of kinetic and potential energy, i.e.

T.E=K.E+ P.E — {wii)

After substituting the values of K.E and P.E from Eq. (17.11) and Eq. (17.13) in Eq. (vii), we
get:

-1 2_.2 A, .2 1,32
T.E zk{x, x*) + zkx zkx,_ {(17.15)

As, w = ‘%’ or k = m w?, so Egq. (17.15) can also be

written as:

T.E= zmm x — 17.186)

From Egs. (17.12), (17.14) and (17.15), it is proved, :mt«"_f_

Total energy of the mass-spring system is mt und is
proportional to square of the amplltude nl.‘ nﬂ:ltlaﬂun

This statement of cunser‘ratitm \of energy is equally valid
for all bodies arx-acuﬂpg SHM. -

The energy nmiuntex between K.E and P.E, but their sum -
remains constant. This can be illustrated by plotting the Figure 17.7 (d): Graph of energy

(K.E, P.E and T.E) against
graph of K.E, P.E and T.E verses displacement, as shown  displacement. for SHM.
in Fig. 17.7 (d).

Example 17.4: A 0.025 kg mass is attached to a spring which is displaced through 0.10 m to

right of its mean position and then released. Time period of its oscillation is 1.57 s.
Calculate fts:

{a) Angular speed {b) The total energy {c) The maximum acceleration.
Given: m = 0.025 kg % =0.10m T=1.57s
To Find: (a) Angular Speed = w =7 (b)Total Energy = T.E =7

(c) Maximum Acceleration =g =7
Solution: (a) To find angular speed, we use the relation:

m_zx
T

e riad By

{P) The total energy can be fw'by-_y;i'm‘thé'rﬁlatinn:
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Putting values, we get: =



i - . v
.'L ? mhs w = o ‘\‘- iﬁu—i
S\ (U Val
T.E =\ Moy x;
o] | i S
Putting values, we get! | | T.E= % (0.025)(4) (0.1)* =2 x 10° J
{c) For the maximum acceleration, we use the relation: :
a=x, w’
Putting values, we get: a=0.1=x42=1.6ms?

Assignment 17.4

Find the amplitude, frequency and time period of an object oscillating at the end of a
spring, if the equation for its position at any instant t is given by x = 0.25 cos(r/8)t. Also

find the displacement of the object after 2.0 s

17.8 FREE, FORCED AND DAMPED OSCILLATIONS

Depending upon the situation, oscillations may be damped,. free and forced oscillations. Here

we discuss these three types of oscillations in detail.
Free Oscillations

Every oscillator has a natural frequency of vibration with

which it vibrates freely after an initial disturbance. For | | ||

example, an ideal simple pendulum oscillates freely with its
natural frequency, when slightly displaced from its mean
position, as shown in Fig.17.8 (a). The natural frequency of
pendulum depends on its length. If you change the length of
string, you may change its natural frequency.

If you pluck a guitar string, it continues to vibrate for some
time after you have released it. It vibrates with its natural
frequency and it gives rise to the particular note that you
hear. The natural frequency of guitar string depends on its
length. If you change the length of string, certainly you
change its natural frequency.

.

SEsSsemEmssEEss

Figure 17.8 (a): Wustration of
free oscillation.

A body is said to be executing free oscillations when it oscillates under the influence of a
restoring force without any external force acting on it.

The free oscillations possess constant amplitude and period without any external force acts on

it. Ideally, free oscillations do not undergo damping.
Forced Oscillations

If an external force acts on an oscillator, it can change its amplitude of oscillations. The
external force shifts the energy to the oscillator at a certain frequency, not necessarily the
same as the natural frequency of the oscillator. This frequency ils called driven freguency.

Mational Book Foundation ) W !
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For example, when you push a swing, you have to keep periodically
pushing it so that the it doesn’'t reduce its amplitude and continue
oscillating. These oscillations are called forced oscillations.

If the external forces make the object to oscillate at the frequency of
applied force rather than its natural frequency, then such oscillations
are called forced oscillations.

Movement of the pendulum of a clock (as shown in Fig.17.8-b) is also
an example of a forced oscillations, because it is driven by a small
motor.

Figure 17.8 (b):
Damped Oscillations iliustration of force

oscillation.

Damping is the effect of resistive forces which dissipate energy from a

vibrating object. When a simple pendulum {s being set into oscillatory motion, then after some
time, it stops oscillating due to air resistance. All oscillating systems experience such type
of resistive force which are known as damping forces. Due to the damping force, amplitude of
oscillation decreases over time from one oscillation to the next and Evgntu_qtly stops oscillating.

Examples of damping forces can include frictional forces between moving parts, air resistance
or internal forces such as those in springs thattend | |\ " " :

to dissipate energy as heat. .. _ (03 W iacament

We know that in reality, a spring won't oscillate

forever. Frictional forces (will 'diminish the Time
amplitude of oscillations ‘until eventually the

system comes to rest, "

If the amplitude of oscillations decreases under

damping forces, then such oscillations are called Figure 17.9 (a): Displacement-time
damped oscillations. graphs to {llustrate undamped oscillations.

it can also be defined as: when an oscillator undergoes oscillations before coming to rest under
the action of damping force, then such oscillations are called damped oscillations. As an
oscillator vibrates, it performs work against force of friction, which result in the gradually
decrease of oscillator’'s energy.

The damping is said to be light when the amplitude of oscillations decreases gradually with
time.

Light damping gradually reduces the energy and amplitude of the vibrating object. An example
of “light damping' is a swing in playground, which gradually comes to rest when oscillates freely.
Displacement-time graph of light damping is shown in Fig. 17.9 (a) by black curve.

Heavy damping takes long time before the object comes to rest: it is shown in Fig. 17.9 (b} by
green curve. ST :
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In heavy damping, the oscillator merely moves back to its equilibrium position gradually without
completing a single ns:iuatlm It is the result of a very large resistive force.

Oscillations of a mass attached to a ADisplacement

spring that is placed in a thick, viscous Light Damping
liquid, can be considered as heavy Heavy Damping
damping. Critical Damping

Critical damping returns the object to /-\

the equilibrium position in the shortest 1 7 X ./%_l‘m'
time possible. An example of critical o \/ U

damping is shock absorbers in a car;

they increase the resistive force so that

after being displaced when going over time lust
a bump, the vehicle returns to its ;'ﬁ"ﬂ:‘mfhﬁfhm'mmﬁ'"m'"h O e
original position without oscillating. L - J

Critical damping is shown in Fig. 17.9 (b) by red curve.

When an oscillator comes to rest without any E il it

oscillation in the shortest time under Y I ra 4 spring acts as
damping force, then such damping is called - ?
critical damping.

Critical damping is often meful th'lan
oscillating system because | such systems
return to equilibrium) position rapidly after
facing external deriving force. For example,

when a car is passing over a bump on road,
it would move up and down violently for
sometimes which may cause injury to

passengers. To overcome this problem,
Figure 17.9 (c): Shock absorbers are nuld-ﬂllcd '
energy-absarbing devices (damping) known tu'%es that tur{;-n {M simple harmonic motion of the

as shock absorbers are positioned parallel to  springs into damped harmeonic motion.

the spring in automobiles. Vehicles have

springs between the wheels and the frame, as shown in Fig. 7.9 (c), provide a smoother and
comfortable ride.

Modern auto suspensions are set up so that all of a spring’s energy is absorbed by the shock
absorbers, eliminating vibrations in single oscillation. This prevents the car from continually
bouncing.

17.9 RESONANCE : ‘ "

|
A driving force is always required to initiate the oscillations of ﬂﬂ? DﬁClllﬁtﬂr, damped or un-
damped, by supplying the initial energy for the motion. The driving forces have their own
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frequencies, which cause the amlllamr to vibrate at the driving frequency rather than at the
natural frequency. wF ,-.I |

when the w|’ne.-u'a|.n=:-n.|:g.»I :::f drlving force gradually increases from zero, the oscillator begins to
vibrate with small amplitude. As we increase the frequency, the amplitude of vibration also
increases. The closer the deriving frequency to the natural frequency, the more efficiently the
driving force transfers energy to the oscillator and the greater the resulting amplitude. When
the deriving frequency equals the natural frequency of oscillator, the amplitude of vibrations
reaches to its maximum wvalue, this situation is called resonance. Hence resonance is defined

as:
Resonance is the phenomena in which the amplitude of Z \
wvibration of an oscillator attains maximum wvalue when
deriving frequency becomes equal to the natural frequency
of oscillator. The natural frequency of the oscillator is

called resonance frequency.

At resonance frequency, the efficiency of energy transfer

from the driving force to the oscillator is maximum. This ;

can be demonstrated with a simple experiment, as shawn ||~

in Fig. 17.10. Here the five pendulums A, B; C, Dand Eare || -~

::spended vertically from the same hMm‘mai red. The | Filgure tratl?‘lm' rtl-l-'l to
ngths of A and B are same a.nﬁ equal tﬂt,\and thé length e ot it

quandDaresarne-andequat‘an )

If length of pendulum E. ﬁ :Jnade equat to the lengths of pendulum A and B, and E is set into
vibrations in directibh perpendicular to the plane of Ay

the paper. Then, after some time A and B start
vibrations automatically but C and D will remain at
"rest. This .is due to the reason that E has same
length and frequency as A and B.

If length of pendulum E is made equal to the lengths
of pendulum C and D, and pendulum E is set into
vibrations in a direction perpendicular to the plane
of the paper. Then after some time pendulum C and
D start vibrating automatically but pendulum A and
B will remain at rest. This is due to the reason that
pendulum E has same length and hence freguency
as pendulum C and D.

Effect of Damping on Resonance

Damping reduces the maximum amplitude of an
oscillator at its resonance fregquency and broadens l-'!'.lr- 'I? 11: Graph of amplitude against

illustFated | \\frequency of driving force for small,
the resonance curve. This can be Elu_.ts__trat‘gd_t.ty it o g
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plotting a graph of the amplitude of a damped harmonic oscillator against the frequency of
driving force, as shown in Fig. 17.11. The graph shows that smaller damping results in a sharper
resonance peak and larger amplitude. While heavy damping, decreases the amplitude.

In practical applications, such as car's suspension system, heavy damping is employed to
minimize oscillations and ensure a smooth ride when traveling over bumps and jumps.

Applications of Resonance in Daily Life

Resonance plays very important role in various phenomena of daily life. Here we shall discuss
some circumstances in which resonance is useful:

Tuning of Radio and Electrical Resonance: When we turn the knob of a radio to tune
a station. We are actually changing the natural frequency of the electrical circuit of receiver
to make it equal to the transmission frequency of the radio station. When the two
frequencies match with each other, then resonance occurs. In this way, energy absorption
from the station is maximum and this is the only station we hear.

Magnetic Resonance Imaging: Magnetic resonance imaging (MR1)} is a widely used medical
diagnostic tool in which atomic nuclei (mostly hydrogen nuclei) are made to oscillate by
incoming strong radio waves (on the order of 100 MHz). When resonance occurs, maximum
energy is absorbed by the nuclei. The patt:em qf Energy ahsorbed can be used to produce
computer enhanced photography. [

Heating/Cooking of Food in Mrtrnwave Gvens. and Resonance: In a microwave oven,

the microwave with a frequency !.imilar to the natural frequency of vibration of water or
fat molecules are used(| M\en"thé food is placed in the oven, the water molecules in the
food oscillate by .nl:s::lrbing maximum energy from the microwaves. Hence, it causes the
food to heat up for cooking. The plastic or glass containers do not heat up in ovens, since
they do not contain water molecules.

Resonance in Guitar: When the guitarist strikes the guitar strings, a vibration is produced.

The vibration transmits to the hollow wooden box. Thus, creating resonance, and the sound
gets amplified.

Following are some circumstances in which resonance should

be avoided:

Resonance in Bridee: Soldiers while marching on the
bridge are ordered to break their steps. This is because
that the vibrations created by the rhythmic march on the
bridge cause the bridge to oscillate with its natural
frequency. Thus, amplitude of vibrations increases and
resonance occurs that causes the bridge to collapse. One
of the most studied examples of this is the collapse of
Tacoma Marrows Bridge, as shown in Fig. 17.12. The m 17.12; Collapse of
strong continuous wind drove oscillations of the bridge | Tacoma Narrows Bridge in 1940
deck that increased in amplitude until it broke apart. during a windstorm.
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= Resonance in Airplane’™s Wing: The wing is a very flexible part of the airplane. If the
periodic vibrations of the wind gust have a frequency equal to the natural structural
frequency of the wing, resonance occurs. At resonance, the amplified vibrations of the wing
become too large. It éventuauy leads to its destruction. To avoid resonance, it is important
to design the wing such that the natural frequency of the wing does not match the external
frequencies of vibrations.

Science Tidbit

A singer can shatter a glass by loudly
singing a note that matches the
natural frequency of the glass. When
the sound gets too loud for the glass
to vibrate with large enough
amplitude, it shatters the glass.

Applications of Resonance and Standing Waves

There are many applications of resonance in different dwﬁ:es that generate and use standing
waves. Some of them are discussed here;

Rubens Tubes: A Rubens tube (also
known as a standing wave flame tube)

s Bbw. oo Bhas kB,

is used to |demonstrate ot e
acoustic standing waves. It consists of - Rubber

a metal pipe with holes drilled atong mLrane
the top and sealed at both ends. One

sealed end is attached to a small s [ —
speaker or frequency generator while i

the other end is connecter to a supply

of a flammable gas, as shown in Fig. Figure 17.13: Rubens tube setup.
17.13. The pipe is filled with the gas,

and the gas leaking from the perforations produces a resonant flame.

Science Tidbit

Rubens tube is invented by German
Physicist Heinrich Rubens in 1905, It
graphically shows the relationship
between sound waves and sound
pressure, acting as a
primitive oscilloscope.
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when sound waves of resonance frequency (based on the tube
dimensions) is produced by frequency generator, a standing wave
formed inside the tube, The standing wave creates points with
oscillating (higher and lower) pressure within the tube. Less gas will
escape from the perforations in the tube where pressure is low, hence
the flames will be lower at these points. Large quantity of gas will
escape from the perforations in the tube where pressure is high, hence
the flames will be high at these points. The wavelength of the standing
wave can be determined with a ruler by measuring the distance '
between low and high flame. Figure 17.14:

Acoustic levitation.

Acoustic Levitation: Acoustic levitation is a method for suspending
matter in air against gravity by using acoustic pressure from high intensity sound waves, as
shown in Fig 17.14. Acoustic levitation provides a container-less environment for some
experiments. Acoustic levitation occurs when sound waves interact and create a standing wave
with nodes that can trap a particle.

Chladni Plates: A chladni plate consists of a flat metal sheet (usually circular or square)
mounted on a central stalk attached to a strong base. When the plate oscillates in a particular
mode of vibration, the nodes and antinodes that formed produce a complex but symmetrical
patterns on its surface. The positions of these nodes and antinodes can be seen by sprinkling
sand upon the plates. The sand will vibrate away from the- ‘antinodes and gather at the nodes.

T EEC\MANS Cicnce Tidbit

Scan the above QR code then search the appeared link to see the video of an interesting experiment.
It is a good demonstration to show how complicated modes of vibration can be formed on the chladni
plates of different shapes and dimensions.

SUMMARY

< When a body moves to and fro about its mean position, then such metion is called vibratory
or oscillatory motion. |

4 The complete round trip of an oscillating or vibrating body about its mean position is called
oscillation or vihra{i_nn. \
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The distance of vibrating body from the é&ulttbr'ium position on either side at any instant
of time is known as displn:mnt its S| unit is meter.

The maximum d]sptapernent 'of a vibrating body from mean position is called amplitude. Its
S1 unit is meter. = -

The time taken to complete one oscillation or vibration is called time period of the
oscillation. It is denoted by T. Its 51 unit is second.

The number of vibrations or oscillations per unit time is called frequency.

SHM is an oscillatory motion in which acceleration of a particle is directly proportional to
its displacement from the mean position and is always diréected towards the mean position.

When a body moves in a circle, its projection undergoes simple harmonic motion on the
diameter of the circle.

The angle which specifies the displacement as well as the direction of a point executing
SHM is called phase of the motion.

Energy of a body executing SHM remains conserved. The energy oscilla.tes between K.E and
P.E, but their sum remains constant. . e

A body is said to be executing free oscillation when, it. ¢pciuam mder the influence of
restoring force without any external fnrcq acthg m it

If the external forces make the object: ’Iellqtin_q at the frequency of applied force rather
than its natural frequency, then su:h lations are called forced oscillations.

if the amplitude ofo5¢ Pllhll:kms decreases under damping forces, then such oscillations are
called damped md!l.atinns

The damping is said to be light when the amplitude of oscillations decreases gradually with
time.

When an oscillator comes to rest without any oscillation in the shortest time under a
damping force, then such damping is called critical damping.

Resonance is the phenomena in which the amplitude of vibration of an oscillator attains
maximum value when deriving frequency equals the natural frequency of oscillator.

A Rubens tube is used for demonstrating acoustic standing waves.

Acoustic levitation is a method for suspending matter in air against gra\nty by using acoustic
pressure from high intensity sound waves.
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EXERCISE

Multiple Choice Questions

Encircle the Correct option.

1)

2)

3)

4)

5)

6)

7)

8)

which of the following statements is true regarding the acceleration of the particle

executing simple harmonic motion?

A. Acceleration is zero at the mean position

B. Acceleration is maximum at the mean position

C. Acceleration is zero at the extreme position

D. Acceleration is a constant

If your heart rate is 150 beats per minute during strenuous exercise wl'lat is the time per

b-eat in seconds? _ A
. 150 B. 2.5 C. 0.4 [~ WO

frs D 0.0067

Whil:h of the following relationship hel;ween the- at:l:eteral:jm “a’ and the displacement *x*
of a particle involve SHM? ( /
A.a=0.7x El.a-~zul:lx1\ C-at-~10x D. a=100x*
A mass-spring system underhom ‘slmpbe Iz-arn'lonic motion has amplitude A. When the kinetic
energy of the object| 'F,‘dual!- twice the potential energy stored in the spring, what is the
position x of thdir h‘ti}éct?

A

A
A. A B. — s D.0
3 J3

Suppose we replace the spring in a simple harmonic oscillator with a stronger spring, having
twice the spring constant. What is the ratio of the new period of oscillation to the original
period?

L 1 Jz
A > B. ?E c.1 D.
A pinball machine uses a spring that is compressed 4.0 cm to launch a ball. If the spring
constant is 13 N/m, what is the force on the ball at the moment the spring is released?
A.S2HN B.0.52 N C.0.52Hm D.S52ZHm
A particle is executing simple harmonic motion with period T. At time t = 0 it is at the
equilibrium peoint. At which time is it furthest from the eguilibrium point?
A.0.50T B.O.70T C.0.257T D.1.47T
The acceleration of a body executing simple hmmonic m-ntiun Ieads the velocity by what
phase? o e
A. O rad Bu/8rady < — || c:. m’4 rad D. n/2 rad
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9) A simple pendulum has a peﬁnd nf 2 55 What is its period if its length is made four times

larger? Al
A.0.625s 51155 C.25s D. 5=
10) What is the freqhﬂ'h:y of a pendulum that swings at the rate of 45 cycles per minute?
A. 0.75 Hz B. 1.3 Hz C. 2700 Hz D. 60 Hz

11) A block at the end of a horizontal spring is pulled from equilibrium at x = 0 to x = A, and
then released. Through what total distance does it travel in one full cycle of its motion?

A.ﬂ B. A C.2A D. 4 A

2
12) A particle is vibrating simple harmonically with an acceleration of 16 cm 52 when it is at a
distance of 4 cm from the mean position. Its time period is:
A.1s B. 2.572 s ] C.3.14Z2 s D. 6.028 s

Short Questions

1) If we halve the length of a simple pendulum to its original length, what is the alteration in
the period of this pendulum? What is its new frequency?

2) If the amplitude of vibration of a body executing SHM 15 doubled, what will happen to the
maximum kinetic energy?

3} When marching soldiers are about to cross| a briage the'}.r break steps Why?

4) Suppose that a driving force has half fremmy ‘as' compared to the frequency of an
oscillator. Will it produce Wsmanca? Sirnﬂarly. if the driving frequency is twice the
frequency of the umcill.atur, wﬂl it produce resonance?

5) Pendulum clocks_ are’ mh:le to Tun at the correct rate by adjusting the pendulum’s length.
Suppose you move from one city to another where the acceleration due to gravity is slightly
greater, taking your pendulum clock with you. Will you have to lengthen or shorten the
pendulum to keep the correct time, other factors are remaining constant? Explain your
answer.

6) Two mass-spring systems vibrate with simple harmonic motion. If the spring constants are
equal and the mass of one system is twice that of the other, which system has a greater
period?

7) Give some applications in which resonance plays an important role.

8) A simple pendulum is set into vibrations and left untouched, eventually stops, why?

9) Under what condition(s) the motion of a simple pendulum be simple harmonic motion?

10) At what position is the velocity of a particle executing simple harmonic motion a) maximum
b} minimum?

11) Show that the motion of projection of a body revolving in a circle describes S.H.M.

12) sketch displacement-time graphs to illustrate light, critical and heavy damping.

13) Justify the importance of critical damping in a car 5uspensinn system-_

14) Differentiate free and forced oscillations. )

15) How the time period of a simple pendulum changes if mass of TL'. bnh is doubled? What
change arises in time period of mass attached to a spring if same is done here?
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Comprehensive Questions, || |

1) Define and explain phase in!simple harmonic motion.

2Z) Derive the expressions for instantaneous displacement, instantaneous velocity and
acceleration of the projection of a particle moving in a circle.

3) Show that motion of a mass attached to a spring executes S.H.M.

4) Analyse the interchange between kinetic and potential energy during simple harmonic
motion.

5) What is resonance? Give three of its applications in our daily life?

&) Justify some circumstances in which resonance should be avoided.

7) Derive equations for kinetic and potential energy of a body of mass m executing S.H.M,

8) Explain what is meant by damped oscillations?

9) Explain the relation between damping and sharpness of resonance.

10) Discuss the use of standing waves and resonance in (a) rubens tubes (b) chladni plates
{c) acoustic levitation.

11) Analyze graphical representations of the wvariations of displacement, wvelocity and
acceleration for simple harmonic motion.

12) Explain the terms light, critical and heavy damping, with the help af cg.arnptes

Numerical Problems 5 T2\ [t

1]Themmtitmieufthemﬂonﬂfamaﬁamdwd maspt‘inllsz 48 m, whﬂemaxirnumspeed
nfit'imaﬂi:436m:.‘ﬂhlti5ﬂ1eperindﬂfﬂmmuﬂh? (Ans: 3.57 s)

2) A particle moves, whose displa ¢ '-_t Az A fwﬂim of time is: x = 3.0 cos(Zt), where distance
is measured in meter arpd }WTH‘ second.

a) Calculate the amplltude the frequency, the angular freguency and the period of this
particle?

b) Calculate the time at which the particle reaches the midpoint (i.e., x = 0) and the turning
point?

{Ans: {(a) 3.0 m, 0.318 Hz, 2.0 rad s, 3.14 5 (b) 0.785 s, 1.57 5)

3) A particle executes simple harmonic motion, that moves back and forth along x-axis between
points —0.20 m and +0.20 m. The period of the motion is 1.2 5. At the time t = 0, the particle
is at +0.20 m and its velocity is zero.

a) What is the frequency of the motion and the angular frequency?
b) What is the amplitude of the motion?

c) At what time will the particle reach the point x = 0? At what time will the particle reach the
point x = 0.10 m?

d) What is the speed of the particle when it i.r. at x = G? What is the spead m“ the particle when
it reaches the point x = 0.10 m? \

(Ans: (a) 0.83 Hz, 5.2 rlu:l s"‘ {h] ﬂ 20 m{t} ﬂ.!ﬂ s, O.ZD s (d) 1.05m s, 0.91 ms?)
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4) A mass of B.0 kg is attached tn a Spﬂng and mcillates with amplitude of 0.25 m and has a
frequency of 0.60 Hz. What is tl"IE enermr of -the motion? (Ans: 3.6 J)

5) Calculate the period and ﬁ{aquency of a 3.5 m long pendulum at the following locations:
a) at Karachi, where g = 9.832 m s2.
b) at K-2, where g = 9. 782 m s,
(Ans: (a) 3.747 s, 0.2669 Hz (b) 3.757 s, 0.2662 Hz)

6) In a car engine, a piston executes SHM with amplitude of 0.41 m. The engine is running at
angular frequency of 2400 rpm (251 rad s7'). What is the maximum speed of the piston?

{Ans: 103 m s™)
7) A ball connected to a sprlng executes SHM. At t = 0, its displacement is 0.50 m and its
acceleration is -0.72 m s*. The phase cunstant for its motion is 0.84 rad. What is the ball's
displacement at t = 3.4 s7 (Ans: 0.15 m)
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